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A REMARK ON STRONGLY EXPOSING 
FUNCTIONALS 

KA-SING LAU 

ABSTRACT. By using the concept of farthest points, we show that the set of 
strongly exposing functionals of a weakly compact convex subset in a 
Banach space X is a dense Gs in X*. The construction also gives a new proof 
of existence of strongly exposed points in weakly compact convex sets. 

Let K be a convex subset in a Banach space X, a point x E K is called a 
strongly exposed point of K if there exists an f E X* such that (i) f(x) > f(y) 
for all y # x in K, (ii) for any sequence (xn) in K with f(xn) -- f(x), xn -- x 
in norm. We call the above f a strongly exposing functional of K and use K A to 
denote the set of strongly exposing functionals of K. Lindenstrauss [5] and 
Troyanski [6] proved that if K is a weakly compact convex subset in X, then 
K is the closed convex hull of its strongly exposed points. In [1], Ananthara- 
man showed that if K is the closed convex hull of the range of a vector-valued 
measure (hence K is weakly compact) then KA is a dense Gs in X*. A similar 
conclusion has also been obtained by the author for weakly compact convex 
subsets in certain classes of Banach spaces [4]. In this note, by modifying the 
method in [4], we prove 

THEOREM 1. Let K be a weakly compact convex subset in a Banach space X; 
then KA is a dense G8 in X*. 

In the proof, we will need the following propositions. 

PROPOSITION 2 (TROYANSKI). Let X be a weakly compact generated Banach 
space; then X admits an equivalent locally uniformly convex norm. 

PROPOSITION 3 (LAU). Let K be a weakly compact subset in a Banach space 
X; then the set 

{x E X: |x -zll = sup{||x - y: y E K)for some z E K) 

is a dense G8 in X. 

We call the point z in the above proposition a farthest point of K [2], [3]. It 
is known that if X is locally uniformly convex, then a farthest point of a 
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bounded convex subset is also a strongly exposed point. 
PROOF OF THE THEOREM. Note that 

KA = E X*: diam {x E K: f(x) > sup f(y) - a} 
n= 1 y FEK 

< 
I 

for some a > 0) 

and the set on the right side is a Gs [1], [4]; hence it suffices to show the density 
of KA in X*. By a remark in [4] and Proposition 2, we may assume that X is 
weakly compact generated (say, by K) and locally uniformly convex. Let 
f E X* with Ilf l = 1. For e>0, let C = f-I(O) n 2e-1B where B is the 
closed unit ball of X. By a homothetic translation, we may let K C B but 
K N C (note that K A is unchanged). We will construct a point z C K which 
is a strongly exposed point of the closed set conv (K U C). The corresponding 
strongly exposing functional g of conv (K U C) with ||g|| = 1 will satisfy 
llf - gll < E and also strongly exposes K at z (for details, cf. [4, Theorem 2.4]); 
hence this completes the proof. 

Choose a point xl E K\C such that the set 

S = {ax, + /y: la 12 + 1 12 < l,y E C) 

does not contain K (we neglect the case that K is a singleton, xl may be chosen 
as midpoint of some line segment of K not lying in C). Since C is an absorbent 
subset of the hyperplanef- (0), S is an absorbent subset of X. Let I1 111 be the 
norm defined by S; then I I is locally uniformly convex and equivalent to the 
original norm. There exists x2 E K\S with HIIx2 I - 1 = a > 0. By Proposi- 
tion 3, there exist points w E X, z E K with Hllwlll < a/2 and /3 = w- zll 
= sup{||w - y||: y E K). For any pointy E C, 

IllY - wlII < IIIYIII + a/2 < 1 + a/2 </,. 

Hence z is also a farthest point of conv (K U C). It follows that z is a strongly 
exposed point of conv (K U C). Q.E.D. 

We remark that the above construction yields another proof of the existence 
of strongly exposed points in weakly compact sets as in [5]. Moreover, we have 

COROLLARY 4. Let K be a weakly compact convex subset in a Banach space X; 
then for any bounded closed convex subset C such that K N C, there exists a point 
x E K which strongly exposes conv (K U C). 

PROOF. It follows easily from the above theorem and Theorem 2.4 in [4]: if 
K is a bounded closed convex subset in X, then KA is a dense G8 if and only 
if for any bounded closed convex subset C such that K X C, there exists a 
point x c K which is a strongly exposed point of conv (K U C). 
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